Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We study classical wormhole solutions in 3D gravity with end-of-the-world (EOW) branes, conical defects, kinks, and punctures. These solutions compute statistical averages of an ensemble of boundary conformal field theories (BCFTs) related to universal asymptotics of OPE data extracted from the 2D conformal bootstrap. Conical defects connect BCFT bulk operators; branes join BCFT boundary intervals with identical boundary conditions; kinks (1D defects along branes) link BCFT boundary operators; and punctures (0D defects) are endpoints where conical defects terminate on branes. We provide evidence for a correspondence between the gravity theory and the ensemble. In particular, the agreement of theg-function dependence results from an underlying topological aspect of the on-shell EOW brane action, from which a BCFT analog of the Schlenker-Witten theorem also follows.more » « lessFree, publicly-accessible full text available September 19, 2026
-
A<sc>bstract</sc> Gravitational Rényi computations have traditionally been described in the language of Euclidean path integrals. In the semiclassical limit, such calculations are governed by Euclidean (or, more generally, complex) saddle-point geometries. We emphasize here that, at least in simple contexts, the Euclidean approach suggests an alternative formulation in terms of the bulk quantum wavefunction. Since this alternate formulation can be directly applied to the real-time quantum theory, it is insensitive to subtleties involved in defining the Euclidean path integral. In particular, it can be consistent with many different choices of integration contour. Despite the fact that self-adjoint operators in the associated real-time quantum theory have real eigenvalues, we note that the bulk wavefunction encodes the Euclidean (or complex) Rényi geometries that would arise in any Euclidean path integral. As a result, for any given quantum state, the appropriate real-time path integral yields both Rényi entropies and associated complex saddle-point geometries that agree with Euclidean methods. After brief explanations of these general points, we use JT gravity to illustrate the associated real-time computations in detail.more » « lessFree, publicly-accessible full text available February 1, 2026
-
A<sc>bstract</sc> Spacetime wormholes can provide non-perturbative contributions to the gravitational path integral that make the actual number of stateseSin a gravitational system much smaller than the number of states$$ {e}^{S_{\textrm{p}}} $$ predicted by perturbative semiclassical effective field theory. The effects on the physics of the system are naturally profound in contexts in which the perturbative description actively involvesN=O(eS) of the possible$$ {e}^{S_{\textrm{p}}} $$ perturbative states; e.g., in late stages of black hole evaporation. Such contexts are typically associated with the existence of non-trivial quantum extremal surfaces. However, by forcing a simple topological gravity model to evolve in time, we find that such effects can also have large impact forN≪eS(in which case no quantum extremal surfaces can arise). In particular, even for smallN, the insertion of generic operators into the path integral can cause the non-perturbative time evolution to differ dramatically from perturbative expectations. On the other hand, this discrepancy is small for the special case where the inserted operators are non-trivial only in a subspace of dimensionD≪eS. We thus study this latter case in detail. We also discuss potential implications for more realistic gravitational systems.more » « less
-
A trace inequality for Euclidean gravitational path integrals (and a new positive action conjecture)A<sc>bstract</sc> The AdS/CFT correspondence states that certain conformal field theories are equivalent to string theories in a higher-dimensional anti-de Sitter space. One aspect of the correspondence is an equivalence of density matrices or, if one ignores normalizations, of positive operators. On the CFT side of the correspondence, any two positive operatorsA, Bwill satisfy the trace inequality Tr(AB) ≤ Tr(A)Tr(B). This relation holds on any Hilbert space$$ \mathcal{H} $$ and is deeply associated with the fact that the algebraB($$ \mathcal{H} $$ ) of bounded operators on$$ \mathcal{H} $$ is a type I von Neumann factor. Holographic bulk theories must thus satisfy a corresponding condition, which we investigate below. In particular, we argue that the Euclidean gravitational path integral respects this inequality at all orders in the semi-classical expansion and with arbitrary higher-derivative corrections. The argument relies on a conjectured property of the classical gravitational action, which in particular implies a positive action conjecture for quantum gravity wavefunctions. We prove this conjecture for Jackiw-Teitelboim gravity and we also motivate it for more general theories.more » « less
-
A bstract In the AdS/CFT correspondence, single trace operators of large- N gauge theories at large spin J can be described by classical spinning strings, giving a geometric and classical description of their spectrum at strong coupling. We observe that in AdS 3 these strings have significant gravitational back-reaction at sufficiently large spin, since the gravitational force does not decay at long distances. We construct solutions for folded spinning strings coupled to gravity in AdS 3 and compute their spectrum, corresponding to the leading Regge trajectory of Virasroro primary operators. These solutions exist only below a maximal spin J < J max , and as J → J max the solution approaches an extremal rotating BTZ black hole.more » « less
-
A bstract We continue the study of real-time replica wormholes initiated in [1]. Previously, we had discussed the general principles and had outlined a variational principle for obtaining stationary points of the real-time gravitational path integral. In the current work we present several explicit examples in low-dimensional gravitational theories where the dynamics is amenable to analytic computation. We demonstrate the computation of Rényi entropies in the cases of JT gravity and for holographic two-dimensional CFTs (using the dual gravitational dynamics). In particular, we explain how to obtain the large central charge result for subregions comprising of disjoint intervals directly from the real-time path integral.more » « less
-
null (Ed.)A bstract We generalize the Gao-Jafferis-Wall construction of traversable two-sided wormholes to multi-boundary wormholes. In our construction, we take the background spacetime to be multi-boundary black holes in AdS 3 . We work in the hot limit where the dual CFT state in certain regions locally resembles the thermofield double state. Furthermore, in these regions, the hot limit makes the causal shadow exponentially small. Based on these two features of the hot limit, and with the three-boundary wormhole as our main example, we show that traversability between any two asymptotic regions in a multi-boundary wormhole can be triggered using a double-trace deformation. In particular, the two boundary regions need not have the same temperature and angular momentum. We discuss the non-trivial angular dependence of traversability in our construction, as well as the effect of the causal shadow region.more » « less
-
null (Ed.)A bstract This work is the first step in a two-part investigation of real-time replica wormholes. Here we study the associated real-time gravitational path integral and construct the variational principle that will define its saddle-points. We also describe the general structure of the resulting real-time replica wormhole saddles, setting the stage for construction of explicit examples. These saddles necessarily involve complex metrics, and thus are accessed by deforming the original real contour of integration. However, the construction of these saddles need not rely on analytic continuation, and our formulation can be used even in the presence of non-analytic boundary-sources. Furthermore, at least for replica- and CPT-symmetric saddles we show that the metrics may be taken to be real in regions spacelike separated from a so-called ‘splitting surface’. This feature is an important hallmark of unitarity in a field theory dual.more » « less
An official website of the United States government
